Poison

System.identityHashCode()

之前在 Serializable 一文中简单提及了 Object.hashCode() 方法的实现,今天在看 IdentityHashMap 的源码时看到对 System.identityHashCode() 方法的调用,本文简要记录。

首先在 System.identityHashCode()Java Doc 中有如下下说明:

Returns the same hash code for the given object as would be returned by the default method hashCode(), whether or not the given object’s class overrides hashCode(). The hash code for the null reference is zero.

即与 Object.hashCode() 返回的值相同,可以根据 Open JDK 中的源码来验证,比如在 System.c at jdk8-b120 中有如下代码:

1
2
3
4
5
JNIEXPORT jint JNICALL
Java_java_lang_System_identityHashCode(JNIEnv *env, jobject this, jobject x)
{
return JVM_IHashCode(env, x);
}

Object.c at jdk8-b120 中有如下代码:

1
2
3
4
5
6
7
static JNINativeMethod methods[] = {
{"hashCode", "()I", (void *)&JVM_IHashCode},
{"wait", "(J)V", (void *)&JVM_MonitorWait},
{"notify", "()V", (void *)&JVM_MonitorNotify},
{"notifyAll", "()V", (void *)&JVM_MonitorNotifyAll},
{"clone", "()Ljava/lang/Object;", (void *)&JVM_Clone},
};

可以看出 System.identityHashCode()Object.hashCode() 都是调用的 JVM_IHashCode() 方法,该方法的定义位于 jvm.h at jdk8-b120,实现位于 jdk/jvm.cpp at jdk8-b120:

1
2
3
4
5
JVM_ENTRY(jint, JVM_IHashCode(JNIEnv* env, jobject handle))
JVMWrapper("JVM_IHashCode");
// as implemented in the classic virtual machine; return 0 if object is NULL
return handle == NULL ? 0 : ObjectSynchronizer::FastHashCode (THREAD, JNIHandles::resolve_non_null(handle)) ;
JVM_END

跟随源码至 synchronizer.cpp at jdk8-b120:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
if (UseBiasedLocking) {
// NOTE: many places throughout the JVM do not expect a safepoint
// to be taken here, in particular most operations on perm gen
// objects. However, we only ever bias Java instances and all of
// the call sites of identity_hash that might revoke biases have
// been checked to make sure they can handle a safepoint. The
// added check of the bias pattern is to avoid useless calls to
// thread-local storage.
if (obj->mark()->has_bias_pattern()) {
// Box and unbox the raw reference just in case we cause a STW safepoint.
Handle hobj (Self, obj) ;
// Relaxing assertion for bug 6320749.
assert (Universe::verify_in_progress() ||
!SafepointSynchronize::is_at_safepoint(),
"biases should not be seen by VM thread here");
BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
obj = hobj() ;
assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
}
}

// hashCode() is a heap mutator ...
// Relaxing assertion for bug 6320749.
assert (Universe::verify_in_progress() ||
!SafepointSynchronize::is_at_safepoint(), "invariant") ;
assert (Universe::verify_in_progress() ||
Self->is_Java_thread() , "invariant") ;
assert (Universe::verify_in_progress() ||
((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;

ObjectMonitor* monitor = NULL;
markOop temp, test;
intptr_t hash;
markOop mark = ReadStableMark (obj);

// object should remain ineligible for biased locking
assert (!mark->has_bias_pattern(), "invariant") ;

if (mark->is_neutral()) {
hash = mark->hash(); // this is a normal header
if (hash) { // if it has hash, just return it
return hash;
}
hash = get_next_hash(Self, obj); // allocate a new hash code
temp = mark->copy_set_hash(hash); // merge the hash code into header
// use (machine word version) atomic operation to install the hash
test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
if (test == mark) {
return hash;
}
// If atomic operation failed, we must inflate the header
// into heavy weight monitor. We could add more code here
// for fast path, but it does not worth the complexity.
} else if (mark->has_monitor()) {
monitor = mark->monitor();
temp = monitor->header();
assert (temp->is_neutral(), "invariant") ;
hash = temp->hash();
if (hash) {
return hash;
}
// Skip to the following code to reduce code size
} else if (Self->is_lock_owned((address)mark->locker())) {
temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
assert (temp->is_neutral(), "invariant") ;
hash = temp->hash(); // by current thread, check if the displaced
if (hash) { // header contains hash code
return hash;
}
// WARNING:
// The displaced header is strictly immutable.
// It can NOT be changed in ANY cases. So we have
// to inflate the header into heavyweight monitor
// even the current thread owns the lock. The reason
// is the BasicLock (stack slot) will be asynchronously
// read by other threads during the inflate() function.
// Any change to stack may not propagate to other threads
// correctly.
}

// Inflate the monitor to set hash code
monitor = ObjectSynchronizer::inflate(Self, obj);
// Load displaced header and check it has hash code
mark = monitor->header();
assert (mark->is_neutral(), "invariant") ;
hash = mark->hash();
if (hash == 0) {
hash = get_next_hash(Self, obj);
temp = mark->copy_set_hash(hash); // merge hash code into header
assert (temp->is_neutral(), "invariant") ;
test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
if (test != mark) {
// The only update to the header in the monitor (outside GC)
// is install the hash code. If someone add new usage of
// displaced header, please update this code
hash = test->hash();
assert (test->is_neutral(), "invariant") ;
assert (hash != 0, "Trivial unexpected object/monitor header usage.");
}
}
// We finally get the hash
return hash;
}

根据以上源码可知,如果当前对象偏向了某线程,则取消该偏向锁,然后检查对象头上是否含有 hash 值,如果含有则直接返回,如果不含有则调用 get_next_hash() 方法生成 hash 值设置至对象头中并返回,该方法实现位于 synchronizer.cpp at jdk8-b120:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
// hashCode() generation :
//
// Possibilities:
// * MD5Digest of {obj,stwRandom}
// * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
// * A DES- or AES-style SBox[] mechanism
// * One of the Phi-based schemes, such as:
// 2654435761 = 2^32 * Phi (golden ratio)
// HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
// * A variation of Marsaglia's shift-xor RNG scheme.
// * (obj ^ stwRandom) is appealing, but can result
// in undesirable regularity in the hashCode values of adjacent objects
// (objects allocated back-to-back, in particular). This could potentially
// result in hashtable collisions and reduced hashtable efficiency.
// There are simple ways to "diffuse" the middle address bits over the
// generated hashCode values:
//

static inline intptr_t get_next_hash(Thread * Self, oop obj) {
intptr_t value = 0 ;
if (hashCode == 0) {
// This form uses an unguarded global Park-Miller RNG,
// so it's possible for two threads to race and generate the same RNG.
// On MP system we'll have lots of RW access to a global, so the
// mechanism induces lots of coherency traffic.
value = os::random() ;
} else
if (hashCode == 1) {
// This variation has the property of being stable (idempotent)
// between STW operations. This can be useful in some of the 1-0
// synchronization schemes.
intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3 ;
value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
} else
if (hashCode == 2) {
value = 1 ; // for sensitivity testing
} else
if (hashCode == 3) {
value = ++GVars.hcSequence ;
} else
if (hashCode == 4) {
value = cast_from_oop<intptr_t>(obj) ;
} else {
// Marsaglia's xor-shift scheme with thread-specific state
// This is probably the best overall implementation -- we'll
// likely make this the default in future releases.
unsigned t = Self->_hashStateX ;
t ^= (t << 11) ;
Self->_hashStateX = Self->_hashStateY ;
Self->_hashStateY = Self->_hashStateZ ;
Self->_hashStateZ = Self->_hashStateW ;
unsigned v = Self->_hashStateW ;
v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
Self->_hashStateW = v ;
value = v ;
}

value &= markOopDesc::hash_mask;
if (value == 0) value = 0xBAD ;
assert (value != markOopDesc::no_hash, "invariant") ;
TEVENT (hashCode: GENERATE) ;
return value;
}

可以看出源码中提供了六种 hashCode() 方法的实现,在 JDK 8 中执行 java -XX:+PrintFlagsFinal -version | grep hashCode 的输出值如下:

1
intx hashCode                                  = 5                                   {product}

可以知道 JDK 8 中使用的 Marsaglia’s shift-xor RNG scheme 的变体实现。其中注释提到:

Marsaglia’s xor-shift scheme with thread-specific state
This is probably the best overall implementation – we’ll likely make this the default in future releases.

即生成的值与线程特定状态有关,如果我们编写如下代码:

1
2
3
4
5
6
7
8
9
package me.tianshuang;

public class Test {

public static void main(String[] args) {
System.out.println(new Object().hashCode());
}

}

多次运行以上的代码,可以看出每次输出的值相同。而为何未采用基于内存地址的实现呢,其主要原因为 TLAB 的存在会导致连续创建的对象具有连续的内存地址,导致哈希分布不均,全局计数器具有类似的问题,常量哈希值就更差了,直接导致哈希碰撞。

System.identityHashCode() 在哪些地方有用到呢?我举两个例子,一个是 IdentityHashMap 中对 hash 值的计算,源码位于 IdentityHashMap.java at jdk8-b120:

1
2
3
4
5
6
7
8
/**
* Returns index for Object x.
*/
private static int hash(Object x, int length) {
int h = System.identityHashCode(x);
// Multiply by -127, and left-shift to use least bit as part of hash
return ((h << 1) - (h << 8)) & (length - 1);
}

此处使用了 System.identityHashCode() 而未使用 keyhashCode() 方法。另一个例子可以参考 HashMap 链表转换为红黑树后,对于不能通过 Comparable 进行比较或者比较后 compareTo 返回值为 0 的情况,会尝试比较 key 的类名,如果类名相同,则使用 System.identityHashCode() 进行比较,源码位于 HashMap.java at jdk8-b120:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/**
* Forms tree of the nodes linked from this node.
* @return root of tree
*/
final void treeify(Node<K,V>[] tab) {
TreeNode<K,V> root = null;
for (TreeNode<K,V> x = this, next; x != null; x = next) {
next = (TreeNode<K,V>)x.next;
x.left = x.right = null;
if (root == null) {
x.parent = null;
x.red = false;
root = x;
}
else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
for (TreeNode<K,V> p = root;;) {
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);

TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
root = balanceInsertion(root, x);
break;
}
}
}
}
moveRootToFront(tab, root);
}

/**
* Tie-breaking utility for ordering insertions when equal
* hashCodes and non-comparable. We don't require a total
* order, just a consistent insertion rule to maintain
* equivalence across rebalancings. Tie-breaking further than
* necessary simplifies testing a bit.
*/
static int tieBreakOrder(Object a, Object b) {
int d;
if (a == null || b == null ||
(d = a.getClass().getName().
compareTo(b.getClass().getName())) == 0)
d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
-1 : 1);
return d;
}
Reference

Where is object’s hash code stored if biased-locking is enabled in HotSpot JVM? - Stack Overflow
JVM Anatomy Quark #26: Identity Hash Code
IdentityHashMap